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Letter to the Editor
Comments on ‘‘The onset of transient convection in bot-

tom heated porous media’’, by K.-K. Tan, T. Sam and

H. Jamaludin: Rayleigh and Biot numbers

Tan et al. [1] have written a significant paper on the

onset of transient convection in a layer of a porous

medium heated from below. However, their discussion is

flawed at the outset (see the third paragraph on page

2859 of their paper) by their assumption that the Ray-

leigh number that arises in the stability analysis is that

based on a thermal diffusivity jm defined as the effective

thermal conductivity of the porous medium divided by

the effective thermal capacity of the medium, rather than

a thermal diffusivity j� (called the ‘‘modified thermal

diffusivity’’ in [1]) defined as the effective thermal con-

ductivity of the medium divided by the thermal capacity

of the fluid. That the latter is in fact the correct quantity

can be seen immediately from the ratio of coefficients in

the steady state form of the thermal energy equation

(see, for example Eq. (6.5) of [2])

ðqcP Þfv � rT ¼ kmr2T : ð1Þ

Here T is the temperature, v is the Darcy velocity, km is

the effective thermal conductivity of the medium, while

ðqcP Þf is the thermal capacity of the fluid. The important

point is that the heat is convected in the fluid phase only,

whereas it is conducted in both the fluid and solid

phases.

Thus Elder [3] had no reason to ‘‘mention the reason

for employing the modified diffusivity’’––it was just the

sensible thing to do. Also, it is clear that he has not

‘‘mistaken the thermal boundary to be of the FST [fixed

surface temperature] boundary condition’’. In fact, since

he obtained an experimental value for the critical Ray-

leigh number of about 40 (compared with the theoretical

value 4p2 that applies for the case of FST and imper-

meable boundaries) it is clear that in his experiment the

FST condition must have been approximated quite well.

Similarly, the fact that Chen and Chen [4] obtained an

experimental value of 40.07 for the critical Rayleigh

number shows that the FST condition, and not the CHF

condition, applied in their experiments.

Likewise it is not correct that Katto and Masuoka [5]

suggested the use of j� for calculating the Rayleigh

number just because their experimental results for ni-

trogen gas agreed with the theoretical critical Rayleigh
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number of 39.4. They had a sound theoretical reason for

this usage.

Incidentally, the authors of [1] are mistaken in their

belief that ‘‘Ribando and Torrance [6] were the first re-

searchers to extend Lapwood’s analysis to the case of

bottom heating with a CHF (constant heat flux)

boundary condition and provided the theoretical

values . . . as shown in Table 1’’ (of [1]). The values were

obtained some eight years earlier by Nield [7]. (Actually

Nield [7] reported the values 27.10 and 17.65 rather than

27.1 and 17.7.)

More importantly, the authors of [1] stated that

‘‘There are no known theoretical studies of the onset of

convection in porous media caused by unsteady-state

heat conduction’’. They have overlooked the paper by

Nield [8], which contains a section on convection in

porous media. Nield obtained estimates of values of the

critical Rayleigh number for CHF boundaries for the

cases of (a) two impermeable boundaries, and (b) one

boundary impermeable and the other permeable.

Tan et al. further stated that they had estimated that

‘‘the Biot number in most of the bottom heating ex-

periments using a plate heater could only be character-

ized by a CHF boundary condition as the fluid is rather

insulating relative to the heater and typically a system of

glass–water matrix heated by a copper heater will yield a

Biot number of approximately 0.09’’. This is very sur-

prising, because one would then expect a large rather

than a small value of the Biot number. Tan et al. [1] do

not give the expression from which they calculated the

Biot number. In a like manner, Tan et al. [1] criticized

the study by Shattuck et al. [9], claiming that ‘‘They

erroneously used Rac ¼ 4p2’’ and that the Biot number

‘‘may be easily determined to be about 0.05 as the highly

conducting ceramic heater . . . has a high conductivity’’.

From a private communication from Dr. Tan the author

has learnt that Tan et al. [1] followed Pearson [10] and

used a Biot number defined by the heat transfer ratio

ðdq=dT Þtop=ðdq=dT Þbottom at the interface. They should

have used the ratio ðdq=dT Þexterior=ðdq=dT Þinterior. For the
Pearson problem involving the Marangoni effect the

relevant interface is the upper surface, and the two ratios

are equivalent. However, for the problem considered in

[1] the relevant interface is the lower surface, and the two

ratios are the reciprocals of each other. In contrast to the

Nusselt number, the Biot number is a measure of rela-

tive conductivity (or relative resistivity). It is worth
ed.
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noting that Biot worked on conduction some decades

before Nusselt worked on convection.

Also in connection with [9], Tan et al. [1] state that

‘‘the bulk fluid of the porous media (sic) exerts a sub-

stantial shear so that a free surface is not attainable in

the presence of the solids’’. In the context of a porous

medium governed by Darcy’s law this statement does

not make sense, because the Darcy equation is consistent

with slip on the boundaries. Tan et al. [1] also stated that

in the experiments reported in [9] were for a particle

diameter to depth ratio too small for the Darcian flow to

be homogeneous. This is irrelevant. It is not ‘‘the main

cause of the deviations of experiments from theory’’.

Tan et al. [1] also refer to the anomalous result of

Kaneko et al. [11], who obtained a critical Rayleigh

number of 28, which Tan et al. noted was close to the

theoretical value of 27.1 for the CHF boundary. It is

likely that this is just a coincidence, and that the dis-

crepancy is simply due to a nonlinear basic temperature

profile (something pointed out in [2]).

Further, Tan et al. state ‘‘It is clear that the Rayleigh

number can only be calculated at a very strict condition

where the thermal diffusivity of the solid and liquid

matrix are similar and the permeability of the porous

matrix should be large enough so that DTs or heat flux
will be small’’. This statement is incorrect.

In summary, Tan et al. [1] have misinterpreted vir-

tually all the previous experimental work on this topic.

Their own work thus requires reinterpretation. Fortu-

nately they have provided some alternative values of the

critical Rayleigh number and Nusselt number (e.g. in the

last column of each of their Tables 4–7) that are valid.

However, it appears that their predicted critical time

values are invalid.

I am grateful for a private communication from Dr.

Tan.

Addendum on the Biot number

The term �Biot number’ or �Biot modulus’ has been in

use for several decades in the context of films on solid

slabs. The term is named after Jean Baptiste Biot (1774–

1862), after whom the Biot–Savart law in electromag-

netism and the Biot law in optics are also named. The

appellation of �Biot number’ to the parameter that ap-

pears as a boundary condition in the stability problem

for Rayleigh–B�eenard convection is apparently due to

Sparrow et al. [12]. In the same year (1964) of that

publication, Scriven and Sternling [13] called the pa-

rameter a Nusselt number, while earlier (1958) Pearson

[10] had simply called the parameter L. Professor An-

tony Pearson (private communication) has confirmed

that he was unaware of the previous usage of the pa-

rameter at the time he wrote his paper. Professor

Richard Goldstein (private communication) has ex-

plained the somewhat novel nomenclature used in [12] as

follows (see the next three paragraphs).
Both the Nusselt and Biot numbers contain the three

parameters h, l and k. With the Nusselt number they

refer to the fluid undergoing motion with convection

occurring. The Nusselt number is then the ratio of the

convective heat transport to the conduction heat trans-

fer that would occur through a stagnant layer of fluid of

thickness l. The h, l, k in the Biot number usually refer

to the actual heat transfer coefficient (as for Nu,) but k
and l refer to the conductivity and thickness of the

bounding solid. Thus the Biot number is the ratio of the

thermal resistance across the solid boundary (assuming

beyond the thickness, l, there is a uniform temperature)

to that across the fluid boundary layer.

The Biot number has typically been used for con-

duction analysis where all three parameters (and then, of

course, the Biot number itself) are given independent

variables. In contrast the Nusselt number (and h) is al-
most always a dependent variable.

In the stability case we first consider the fluid as a

conducting solid (really just no flow) and the parameters

h, l, k are essentially used as in a transient conductor

analysis. All are known independent variables. The

tricky part may be that h is not a true convective coef-

ficient, but rather a measure of the inverse of the thermal

resistance at the solid boundary. The parameters l and k
refer to the potentially convecting fluid layer. Thus hl=k
is a Biot number relating the thermal boundary condi-

tion on the fluid/solid interface, varying from constant

temperature (Bi tends to infinity) to constant heat flux

(Bi tends to zero).

Equation (1) is based on averaging over a represen-

tative elementary volume containing the fluid and solid

phases. The classic paper by Lapwood is misleading (if

not erroneous) because he did not explicitly define the

thermal diffusivity.
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